Kruskal's tree theorem in Type Theory

Dominique Larchey-Wendling TYPES team
LORIA - CNRS
Nancy, France
http://www.loria.fr/~larchey/Kruskal

Foundations for the Practical Formalization of Mathematics 2017

Well Quasi Orders (WQO) 1/2

- Important concept in Computer Science:
- strenghtens well-foundedness, more stable
- termination of rewriting (Dershowitz, RPO)
- size-change termination, terminator (Vytiniostis, Coquand ...)
- Important concept in Mathematics:
- Dickson's lemma, Higman's lemma
- Higman's theorem, Kruskal's theorem
- Robertson-Seymour theorem (graph minor theorem)
- Unprovability result: Kruskal theorem not in PA (Friedman)

Well Quasi Orders (WQO) 2/2

- for \leq a quasi order over X : reflexive \& transitive binary relation
- several classically equivalent definitions (see e.g. JGL 2013)
- almost full: each $\left(x_{i}\right)_{i \in \mathbb{N}}$ has a good pair $\left(x_{i} \leq x_{j}\right.$ with $\left.i<j\right)$
$-\leq$ well-founded and no ∞ antichain
- finite basis: $U=\uparrow U$ implies $U=\uparrow F$ for some finite F
$-\{\downarrow U \mid U \subseteq X\}$ well-founded by \subset
- many of these equivalences do not hold intuitionistically

WQOs are stable under type constructs

- Given a WQO \leq on X, we can lift \leq to WQOs on:

Higman lemma: list (X) with subword((\leq)
Higman thm: $\operatorname{btree}(k, X)$ with emb_product (\leq) (any $k \in \mathbb{N})$
Kruskal theorem: tree (X) with emb_homeo((\leq)

- These theorem are closure properties of the class of WQOs
- Other noticable results:

Dickson's lemma: $\left(\mathbb{N}^{k}, \leq\right)$ is a WQO
Finite sequence thm: list(\mathbb{N}) WQO under subword (\leq)
Ramsey theorem: \leq_{1} and \leq_{2} WQOs imply $\leq_{1} \times \leq_{2} \mathrm{WQO}$

What Intuitionistic Kruskal Tree Theorem?

- The meaning of those closure theorems intuitionistically:
- depends of what is a WQO (which definition?)
- but not on e.g. emb_homeo which has an inductive definition
- What is a suitable intuitionistic definition of WQO ?
- quasi-order does not play an important/difficult role
- should be classically equivalent to the usual definition
- should intuitionistically imply almost full
- intuitionistic WQOs must be stable under liftings
- Allow the proof and use of Ramsey, Higman, Kruskal... results

Intuitionistic formulations of WQOs $1 / 2$

- Almost full relations (Veldman\&Bezem 93)
$-\operatorname{each}\left(x_{i}\right)_{i \in \mathbb{N}}$ has $x_{i} R x_{j}$ with $i<j$
- works for Higman and Kruskal theorems (Veldman 04)
- uses stumps over \mathbb{N} which require Brouwer's thesis
- Bar induction (Coquand\&Fridlender 93)
- bar extends $(\operatorname{good} R)[]$
- works for the general Higman lemma (Fridlender 97)
- Well-foundedness (Seisenberger 2003)
- extends ${ }^{(-1)}$ is well-founded on $\operatorname{Bad}(R)$
- works for Higman lemma and Kruskal theorem
- requires decidability of R

Intuitionistic formulations of WQOs 2/2

- Almost full relations (Vytiniostis\&Coquand\&Wahlstedt 12)
- af (R) inductively defined
- works for Ramsey theorem
- intuitionistically equivalent to bar extends (good R) []
- Seisenberger's definition not equiv. to Coquand\&Fridlender for undecidable R
- Veldman\&Bezem definition works for R over \mathbb{N} (not over arbitrary types) but requires Brouwer's thesis
- Let us introduce
- bar inductive predicates
- Coquand et al. inductive definition of almost full

Bar inductive predicate, accessibility predicate (i)

- Given $\mathcal{T}: X \rightarrow X \rightarrow \operatorname{Prop}, x: X$ and $Q: X \rightarrow \operatorname{Prop}$
- x bars Q if every ∞ path from x meets Q
- x is accessible if every ∞ path from x meets $_$False
- Inductive definitions (Prop or Type) are stronger (intui.)
$\left.\frac{Q x}{\operatorname{bar} \mathcal{T} Q x} \quad \frac{\forall y, \mathcal{T} x y \rightarrow \operatorname{bar} \mathcal{T} Q y}{\operatorname{bar} \mathcal{T} Q x} \right\rvert\, \frac{\forall y, \mathcal{T} x y \rightarrow \operatorname{acc} \mathcal{T} y}{\operatorname{acc} \mathcal{T} x}$
- Axioms (like Brouwer's bar thesis) for equivalence
- Obviously: acc $\mathcal{T} x$ iff bar \mathcal{T} (\mapsto False) x

FAN theorem and bar over lists (ii)

- inductive FAN theorem: \quad bar $\mathcal{T} Q x \rightarrow$ bar $\mathcal{T}^{\circ} \forall Q[x]$
- for monotonic $Q: \forall x y, \mathcal{T} x y \rightarrow Q x \rightarrow Q y$
- $\mathcal{T}^{\circ} l m$ iff $\forall y, y \in m \rightarrow \exists x, x \in l \wedge \mathcal{T} x y$ (direct image)
- $(\forall Q) l$ iff $\forall x, x \in l \rightarrow Q x$ (finite quantification)
- We use bar $\mathcal{T} Q$ with $\mathcal{T}=$ extends and $Q=\operatorname{good} R$
- extends $l m$ iff $m=\ldots:: l$
$-\operatorname{good} R l l$ iff $l l=l++b:: m++a:: r$ for some $a R b$
- bar extends $(\operatorname{good} R)[]$ iff
iterated extensions of [] must cross a good list
- every infinite sequence contains a good pair (almost full)

Well-founded trees over a type X

- Well-founded trees wft (X)
- branching indexed by X
- the least fixpoint of $w f t(X)=\{\star\}+X \rightarrow \operatorname{wft}(X)$
- Given a branch $f: \mathbb{N} \rightarrow X$, compute its height:
- $f(1+\cdot)=x \mapsto f(1+x)$
$-\mathrm{ht}(\mathrm{inl} \star, \quad$) $=0$
$-\operatorname{ht}(\operatorname{inr} g, f)=1+\operatorname{ht}\left(g\left(f_{0}\right), f(1+\cdot)\right)$

- Veldman's stumps are sets of branches of trees in wft (\mathbb{N})

Coquand's Almost full relations, step by step

1. Veldman et al.: $\forall f: \mathbb{N} \rightarrow X, \exists i<j, f_{i} R f_{j}$
2. Logically eq. variant: $\forall f: \mathbb{N} \rightarrow X, \exists n, \exists i<j<n, f_{i} R f_{j}$
3. Partially informative: $\forall f: \mathbb{N} \rightarrow X,\left\{n \mid \exists i<j<n, f_{i} R f_{j}\right\}$
4. Variant: $\left\{h:(\mathbb{N} \rightarrow X) \rightarrow \mathbb{N} \mid \forall f, \exists i<j<h(f), f_{i} R f_{j}\right\}$
5. Variant: $\left\{t: \operatorname{wft}(X) \mid \forall f, \exists i<j<\operatorname{ht}(t, f), f_{i} R f_{j}\right\}$
6. Coquand et al.: is defined as an inductive predicate af_t (R)

- the prefix of length $h t(t, f)$ of $f: \mathbb{N} \rightarrow X$ contains a good pair
- the computational content is (for every sequence $f: \mathbb{N} \rightarrow X$):
- a bound on the size of the search space for good pairs
- and it is not a good pair

A well-founded tree for (\mathbb{N}, \leq)

- Property: $\forall f: \mathbb{N} \rightarrow \mathbb{N}, \exists i<j<2+f_{0}, f_{i} \leq f_{j}$
- In $\operatorname{wft}(\mathbb{N})$, we define T_{n} the tree of uniform height n :
$-T_{0}=\operatorname{inl}(\star)$ and $T_{1+n}=\operatorname{inr}\left(-\mapsto T_{n}\right)$
- for any $f: \mathbb{N} \rightarrow \mathbb{N}, \operatorname{ht}\left(T_{n}, f\right)=n$
- And $T_{\leq}=\operatorname{inr}\left(n \mapsto T_{1+n}\right)$

- Hence $\operatorname{ht}\left(T_{\leq}, f\right)=1+\operatorname{ht}\left(T_{1+f_{0}}, f(1+\cdot)\right)=2+f_{0}$

Almost full relations, inductively

- Lifted relation: $x(R \uparrow u) y=x R y \vee u R x$
- in $R \uparrow u$, elements above u are forbidden in bad sequences
- full : $\mathrm{rel}_{2} X \rightarrow$ Prop and af_t : rel ${ }_{2} X \rightarrow$ Type

$$
\frac{\forall x, y, x R y}{\text { full } R} \quad \frac{\text { full } R}{\operatorname{af_ t} R} \quad \frac{\forall u, \text { af_t }(R \uparrow u)}{\text { af_t } R}
$$

- af_securedby : wft $(X) \rightarrow \mathrm{rel}_{2} X \rightarrow$ Prop:
- af_securedby $($ inl $\star, R)=$ full R
- af_securedby $(\operatorname{inr} g, R)=\forall u$, af_securedby $(g(u), R \uparrow u)$
- these are intuitionistically "equivalent" (hold in Type, not Prop):
- af_t R and $\left\{t: \operatorname{wft}(X) \mid \operatorname{af} _\right.$securedby $\left.(t, R)\right\}$
$-\operatorname{and}\left\{t: \operatorname{wft}(X) \mid \forall f, \exists i<j<\operatorname{ht}(t, f), f_{i} R f_{j}\right\}$

Almost full relations, by bar inductive predicates

- good R : list $X \rightarrow$ Prop
- good $R l l$ iff $l l=l++\boxed{b}:: m++\square:: r$ for some $a R b$
- beware of the (implicit) use snoc lists
- good has an easy inductive definition
- for $P:$ list $X \rightarrow$ Prop, we define bar_t $P:$ list $X \rightarrow$ Type

$$
\frac{P l l}{\text { bar_t } P l l} \quad \frac{\forall u, \text { bar_t } P(u:: l l)}{\text { bar_t } P l l}
$$

- we show: af_t $\left(R \uparrow a_{n} \uparrow \ldots \uparrow a_{1}\right)$ iff bar_t $(\operatorname{good} R)\left[a_{1}, \ldots, a_{n}\right]$
- another characterization: af_t R iff bar_t $(\operatorname{good} R)[]$

Almost full relations, some properties

- af_t_refl: if af_t R then $=_{X} \subseteq R$ (iff in case X is finite)
- af_t_inc: if $R \subseteq S$ and af_t R then af_t S
- af_t_surjective (easy but very useful):
- for $f: X \rightarrow Y \rightarrow$ Prop, $R:$ rel $_{2} X$ and $S:$ rel $_{2} Y$
- if f surjective: $\forall y,\{x \mid f x y\}$
- if f morphism: $f x_{1} y_{1}$ and $f x_{2} y_{2}$ and $x_{1} R x_{2}$ imply $y_{1} S y_{2}$
- then af_t R implies af_t S
- Ramsey (Coquand): af_t R and af_t S imply af_t $(R \cap S)$
- he deduces af_t $(R \times S)$ and af_t $(R+S)$
- I stop because you may be almost full (but it is a MUST READ)

Higman lemma and the subword relation

- Given $R:$ rel $_{2} X$ over a type X
- The subword relation $<_{R}^{w}: \mathrm{rel}_{2}($ list $X)$ defined by 3 rules

$$
\overline{[]<_{R}^{w}[]} \quad \frac{l<_{R}^{w} m}{l<_{R}^{w} b:: m} \quad \frac{a R b \quad l<_{R}^{w} m}{a:: l<_{R}^{w} b:: m}
$$

- also write subword R for $<_{R}^{w}$
- Higman lemma (Fridlender 97, non informative version):

$$
\operatorname{bar}(\operatorname{good} R)[] \quad \text { implies } \quad \text { bar }(\operatorname{good}(\operatorname{subword} R))[]
$$

- Nearly the same proof works for bar_t instead of bar
- But this proof cannot be generalized to finite trees...

The product tree embedding, Higman theorem

- trees with same type for all arities: tree $X=X \times$ list(tree $X)$
- trees of breadth bounded by $k \in \mathbb{N}$:

$$
\text { btree } k X=\{t \mid \text { tree_fall }(\langle\mid l l\rangle \mapsto \text { length } l l<k) t\}
$$

- any $t \in T$ is $t=\left\langle x \mid t_{1}, \ldots, t_{n}\right\rangle$ with $n<k, x \in X$ and $t_{i} \in T$
- for a relation $R: \mathrm{rel}_{2} X$, we define (needs some work...)

$$
\frac{s<_{R}^{\times} t_{i}}{s<_{R}^{\times}\left\langle x_{n} \mid t_{1}, \ldots, t_{n}\right\rangle} \quad \frac{x R y \quad s_{1}<_{R}^{\times} t_{1}, \ldots, s_{n}<_{R}^{\times} t_{n}}{\left\langle x \mid s_{1}, \ldots, s_{n}\right\rangle<_{R}^{\times}\left\langle y \mid t_{1}, \ldots, t_{n}\right\rangle}
$$

- also write emb_tree_product R for $<_{R}^{\times}$
- Higman theorem: af_t R implies af_t $\left(<_{R}^{\times}\right)$on btree $k X$

The homeomorphic embedding, Krukal theorem

- one type X for all arities: tree $X=X \times$ list $($ tree $X)$
- for $R: \mathrm{rel}_{2} X$, we define $<_{R}^{\star}$ by nested induction

$$
\begin{gathered}
\frac{s<_{R}^{\star} t_{i}}{s<_{R}^{\star}\left\langle x_{n} \mid t_{1}, \ldots, t_{n}\right\rangle} \\
\frac{x_{i} R x_{j} \quad\left[s_{1}, \ldots, s_{i}\right]\left(\text { subword }<_{R}^{\star}\right)\left[t_{1}, \ldots, t_{j}\right]}{\left\langle x_{i} \mid s_{1}, \ldots, s_{i}\right\rangle<_{R}^{\star}\left\langle x_{j} \mid t_{1}, \ldots, t_{j}\right\rangle}
\end{gathered}
$$

- hand-written elimination scheme (nested induction)
- we also write emb_tree_homeo R for $<_{R}^{\star}$
- Kruskal theorem: af_t R implies af_t $\left(<_{R}^{\star}\right)$

Plan of the rest of the presentation

- high level and informal proof principles of Higman's theorem
- with ideas from Veldman (mostly), Fridlender and Coquand
- tree $\left(X_{n}\right)_{n<k}$, one type (and one relation) for each arity
- focus on several implementation chalenges of that proof
- $\operatorname{tree}\left(X_{n}\right)$ as a (decidable) subtype of $\operatorname{tree}\left(\sum X_{n}\right)$
- embed $\sum X_{n}$ in a (specialized) universe U
- empty type grounded induction for af_t, ...
- what about the non-informative case af ?
- beware af R is weaker than inhabited(af_t R)
- well-foundedness upto a projection
- from Higman theorem to Kruskal theorem (remarks)

The product tree embedding, Higman theorem

- $\operatorname{tree}\left(X_{n}\right)_{n<k}=T$ where T is lfp of $T=\sum_{n=0}^{k-1} X_{n} \times T^{n}$
- one type X_{n} for each arity $n<k$
- any $t \in T$ is $t=\left\langle x_{n} \mid t_{1}, \ldots, t_{n}\right\rangle$ with $x_{n} \in X_{n}$ and $t_{i} \in T$
- for arity-indexed relations $R: \forall n<k, \mathrm{rel}_{2}\left(X_{n}\right)$, we define

$$
\frac{s<_{R}^{h} t_{i}}{s<_{R}^{h}\left\langle x_{n} \mid t_{1}, \ldots, t_{n}\right\rangle} \quad \frac{x_{n} R_{n} y_{n} s_{1}<_{R}^{h} t_{1}, \ldots, s_{n}<_{R}^{h} t_{n}}{\left\langle x_{n} \mid s_{1}, \ldots, s_{n}\right\rangle<_{R}^{h}\left\langle y_{n} \mid t_{1}, \ldots, t_{n}\right\rangle}
$$

- also write emb_tree_higman R for $<_{R}^{h}$
- Higman thm.: $\left(\forall n<k\right.$, af_t $\left.R_{n}\right)$ implies af_t $\left(<_{R}^{h}\right)$

Higman theorem, based on (Veldman 2004)

- each af_t R_{n} is witnessed by w_{n} : af_securedby $\left(w_{n}, R_{n}\right)$
- easier outermost induction on $\left[w_{0}, \ldots, w_{k-1}\right]$ (lexicographic)
- apply rule 2 , hence prove: $\forall t$, af_t $\left(<_{R}^{h} \uparrow t\right)$
- do this by structural induction on t
$-t=\left\langle x_{i} \mid t_{1}, \ldots, t_{i}\right\rangle$ with $i<k$
- we can assume af_t $\left(<_{R}^{h} \uparrow t_{1}\right), \ldots$, af_t $\left(<_{R}^{h} \uparrow t_{i}\right)$
- we show af_t $\left(<_{R}^{h} \uparrow\left\langle x_{i} \mid t_{1}, \ldots, t_{i}\right\rangle\right)$
- depends on $i=0$ or not, $w_{i}=$ inl \star or not

Higman thm, case of leaves $\left(i=0\right.$ and $\left.w_{0}=\operatorname{inr} g\right)$

- we have $t=\left\langle x_{0} \mid \emptyset\right\rangle(i=0)$
- $R_{0}^{\prime}=R_{0} \uparrow x_{0}$ is af_t, witnessed by $w_{0}^{\prime}=g\left(x_{0}\right)$
- $R_{j}^{\prime}=R_{j}$ and $w_{j}^{\prime}=w_{j}$ for $0<j<k$
$-w_{0}^{\prime}=g\left(x_{0}\right)$ is a sub-wft $\left(X_{0}\right)$ of $w_{0}=\operatorname{inr} g$, hence simpler
$-\left[w_{0}^{\prime}, w_{1}, \ldots, w_{k-1}\right]$ easier than $\left[w_{0}, w_{1}, \ldots, w_{k-1}\right]$
- we deduce af_t $\left(<_{R^{\prime}}^{h}\right)$ by induction
- we show $<_{R^{\prime}}^{h} \subseteq<_{R}^{h} \uparrow\left\langle x_{0} \mid \emptyset\right\rangle$ (relatively easy to check)
- we conclude af_t $\left(<_{R}^{h} \uparrow\left\langle x_{0} \mid \emptyset\right\rangle\right)$

Higman thm, case of leaves $\left(i=0\right.$ and $\left.w_{0}=\operatorname{inl} \star\right)$

- $t=\left\langle x_{0} \mid \emptyset\right\rangle$
- $R_{0} \uparrow x_{0}=R_{0}$ because R_{0} is (already) full ($w_{0}=\mathrm{inl} \star$)
- but then we have $x_{0} R_{0} y$ for any y
- hence we deduce $\left\langle x_{0} \mid \emptyset\right\rangle<_{R}^{h}\left\langle x_{j} \mid v_{1}, \ldots, v_{j}\right\rangle$
- any (finite) tree contains a leaf $\langle y \mid \emptyset\rangle$
$-\left\langle x_{0} \mid \emptyset\right\rangle$ embeds into any leaf, e.g. $\langle y \mid \emptyset\rangle$
- we deduce $<_{R}^{h} \uparrow\left\langle x_{0} \mid \emptyset\right\rangle$ is full (trivial to check)
- we conclude af_t $\left(<_{R}^{h} \uparrow\left\langle x_{0} \mid \emptyset\right\rangle\right)$

Higman thm $\left(0<i<k\right.$ and $\left.w_{i}=\operatorname{inr} g\right) 1 / 2$

- let $T=\operatorname{tree}\left(X_{0}, \ldots, X_{k-1}\right)$
- we have $t=\left\langle x_{i} \mid t_{1}, \ldots, t_{i}\right\rangle$ with $0<i<k$
- $X_{j}^{\prime}=X_{j}$ and $R_{j}^{\prime}=R_{j}$ for $j \notin\{i-1, i\}$
- $X_{i}^{\prime}=X_{i}$ and $R_{i}^{\prime}=R_{i} \uparrow x_{i}$ is af_t for $w_{i}^{\prime}=g\left(x_{i}\right)$ simpler than w_{i}
- $X_{i-1}^{\prime}=X_{i-1}+\sum_{p=0}^{i-1} X_{i} \times T$ and $R_{i-1}^{\prime}=R_{i-1}+\sum_{p=0}^{i-1} R_{i} \times\left(<_{R}^{h} \uparrow t_{p}\right)$
- R_{i-1}^{\prime} is af_t by Ramsey, obtain w_{i-1}^{\prime}
$-\left[\ldots, w_{i-1}^{\prime}, w_{i}^{\prime}, \ldots\right]$ easier than $\left[\ldots, w_{i-1}, w_{i}, \ldots\right]$
- we deduce af_t $\left(<_{R^{\prime}}^{h}\right)$ by induction
- we show af_t $\left(<_{R^{\prime}}^{h}\right)$ implies af_t $\left(<_{R}^{h} \uparrow\left\langle x_{i} \mid t_{1}, \ldots, t_{i}\right\rangle\right)$ (not easy)

Higman thm $\left(0<i<k\right.$ and $\left.w_{i}=\operatorname{inr} g\right) 2 / 2$

- with $X_{i-1}^{\prime}=X_{i-1}+\sum_{p=0}^{i-1} X_{i} \times T$, define an evaluation map
- ev : tree $\left(X_{0}, \ldots, X_{i-1}^{\prime}, X_{i}, \ldots\right) \rightarrow \operatorname{tree}\left(X_{0}, \ldots, X_{k-1}\right)$
$-\operatorname{ev}\left(\left\langle y_{j} \mid t_{1}, \ldots, t_{j}\right\rangle\right)=\left\langle y_{j}\right| \operatorname{ev} t_{1}, \ldots$, ev $\left.t_{j}\right\rangle$ for $j \neq i-1$
$-\operatorname{ev}\left(\left\langle y_{i-1} \mid t_{1}, \ldots, t_{i-1}\right\rangle\right)=\left\langle y_{i-1}\right| \operatorname{ev} t_{1}, \ldots$, ev $\left.t_{i-1}\right\rangle$
$-\operatorname{ev}\left(\left\langle\left(p, y_{i}, t\right) \mid t_{1}, \ldots, t_{i-1}\right\rangle\right)=\left\langle y_{i}\right|$ insert $t p\left[\operatorname{ev} t_{1}, \ldots\right.$, ev $\left.\left.t_{i-1}\right]\right\rangle$
- ev (is surjective and) has finite inverse images
- allows the use of bar_t induction and the FAN theorem
- use ev to show af_t $\left(<_{R^{\prime}}^{h}\right)$ implies af_t $\left(<_{R}^{h} \uparrow\left\langle x_{i} \mid t_{1}, \ldots, t_{i}\right\rangle\right)$
- combinatorial principle: $\forall x \in X, P_{x} \vee Q_{x} \Rightarrow \forall x P_{x} \vee \exists x Q_{x}$
- and more complex version (see later)
- very technical part of Coq proof (largely absent from paper)

Higman thm $\left(0<i<k\right.$ and $\left.w_{i}=\operatorname{inl} \star\right)$

- $T=\operatorname{tree}\left(X_{0}, \ldots, X_{k-1}\right)$ and $t=\left\langle x_{i} \mid t_{1}, \ldots, t_{i}\right\rangle$ with $0<i<k$
- $w_{i}=\operatorname{inl} \star$ thus we have R_{i} is full on X_{i}
- X_{j}^{\prime} and R_{j}^{\prime} for $j \neq i$ as in case $w_{i}=\operatorname{inr} g$
- $X_{i}^{\prime}=\emptyset$ with any R_{i}^{\prime} (only one exists) is af_t
- \quad ensure case where $X_{i}^{\prime}=\emptyset$ is simpler than R_{i} is full on X_{i}
$-w_{i}^{\prime}=$ None is simpler than $w_{i}=\operatorname{Some}(\operatorname{inl} \star)$
- we deduce af_t $\left(<_{R^{\prime}}^{h}\right)$ by induction
- we show af_t $\left(<_{R^{\prime}}^{h}\right)$ implies af_t $\left(<_{R}^{h} \uparrow\left\langle x_{i} \mid t_{1}, \ldots, t_{i}\right\rangle\right)$
- similar to the case $w_{i}=\operatorname{inr} g$
- but not easy to factorize the Coq duplicated code

Higman thm $\left(i<k\right.$ and $w_{i}=$ None $)$

- $T=\operatorname{tree}\left(X_{0}, \ldots, X_{k-1}\right)$ and $t=\left\langle x_{i} \mid t_{1}, \ldots, t_{i}\right\rangle$ with $0<i<k$
- but because $w_{i}=$ None, we have $X_{i}=\emptyset$
- this contradicts $x_{i} \in X_{i}$; an easy case indeed

The induction principle of Veldman's proof

- lexicographic product (corresponds to nested induction)
- not grounded on full relations (witnessed by the empty wft)
- but grounded on empty types
- empty types are sub-cases of full relations

Remarks on the implentation of that proof

- Implements "well" for e.g. at most unary/binary trees

Theorem higman_abt_t : forall Z T, @af_t Z T
-> forall Y S, @af_t Y S
-> forall X R, @af_t X R
-> af_t (embed_abtree R S T).
Proof. do 3 (induction 1 using af_t_dep_rect); End.

- Thought it requires a dependent induction principle for af_t
- But that does not work for parameterized breadth k
- $\operatorname{tree}\left(X_{n}\right)_{n<k}$ VERY cumbersome to work with
$-\left[\ldots, w_{i-1}^{\prime}, w_{i}^{\prime}, \ldots\right]$ "easier" than $\left[\ldots, w_{i-1}, w_{i}, \ldots\right]$
- but the $w_{i-1}^{\prime}:$ wft X_{i-1}^{\prime} and $w_{i-1}:$ wft X_{i-1} not same type !!

A dependent induction principle for af_t

Section af_t_dep_rect.

```
Variable (P : forall X, relation X -> Type).
```

Hypothesis HPO : P ER.
Hypothesis HP1 : forall X R, full R -> P ER -> @P X R.
Hypothesis HP2 : forall X R, (forall x, af_t (R rlift x))
-> (forall x, P (R rlift x))
-> @P X R.
Theorem af_t_dep_rect : forall X R, af_t R -> @P X R.
End af_t_dep_rect.

Finite Trees in Coq

- Dependent types: nice way to represent complex data structures
- But too much dependency can make your life miserable
- Hence we represent $\operatorname{tree}\left(X_{n}\right)_{n \in \mathbb{N}}$ by:

$$
\left\{t: \operatorname{tree}\left(\sum X_{n}\right) \mid \operatorname{tree} _ \text {fall }(x l l \mapsto \operatorname{arity} x=\text { length } l l) t\right\}
$$

- tree X is the lfp of tree $X=X \times$ list $(\operatorname{tree} X)$:

Variable X : Type.
Inductive tree : Type := in_tree : X -> list tree -> tree.

- Can freely use the List library to deal with the forest of sons
- Nested definition does not generate a good elimination scheme

Finite Trees in Coq, a nice recursor

Variable P : tree -> Type.
Hypothesis f : forall a ll, (forall x, $\operatorname{In} x$ ll $->P \mathrm{x}$)
-> P (in_tree a ll).

Definition tree_rect t : P t := ... (* use Fix from Wf *)

Hypothesis f_ext : ...

Fact tree_rect_fix a ll :

```
tree_rect (in_tree a ll) = f a ll (fun t _ => tree_rect t)
```


Finite trees in Coq, example definitions

$$
\begin{aligned}
\text { Implicit Types }(P: X ~->~ l i s t ~ t r e e ~ & \text { P Prop) } \\
& (Q: \text { nat }->X->\text { Prop). }
\end{aligned}
$$

Definition tree_fall P : tree -> Prop.

Fact tree_fall_fix P x ll : tree_fall P (in_tree x ll)
<-> P x ll
八 forall t, In t ll $->$ tree_fall P t.

Let btree $\mathrm{k}:=$ tree_fall (fun x ll $=>$ length $11<k$).
Let wfptree $Q:=$ tree_fall (fun x ll $=>Q(l e n g t h$ ll) x).

Higman Embedding in Coq

```
Variables (X : Type) (R : nat -> X -> X -> Prop).
Inductive emb_tree_higman : tree X -> tree X -> Prop :=
    | in_emb_tree_higman_0 : forall s t x ll,
                                In t ll
    -> \(s\) <eh \(t\)
    -> s <eh in_tree x ll
    | in_emb_tree_higman_1 : forall x y ll mm,
        R (length ll) x y
    -> Forall2 emb_tree_higman 11 mm
    -> in_tree x ll <eh in_tree y mm
where "x <eh y" := (emb_tree_higman x y).
```


Higman Embedding in Coq, elimination Scheme

```
Variable S : tree X -> tree X -> Prop.
Infix "<<" := S (at level 70).
Hypothesis S_sub0 : forall s t x ll,
            In t ll -> s <eh t
    -> s << t -> s << in_tree x ll.
```

Hypothesis S_sub1 : forall x y ll mm, R (length ll) x y
-> Forall2 emb_tree_higman 11 mm
-> Forall2 S $\quad 11 \mathrm{~mm}$
-> in_tree x ll << in_tree y mm.
Theorem emb_tree_higman_ind t1 t2 : t1 <eh t2 -> t1 << t2.

Almost Full predicate

Definition af_t $R:=\left\{t: w f t X \mid a f _s e c u r e d b y ~ R ~ t ~\right\} . ~$

Inductive af_type : (X -> X -> Prop) -> Type := | in_af_type0 : forall R, full R -> af_type R | in_af_type1 : forall R, (forall a, af_type (R rlift a)) -> af_type R.

Definition af_t_other R := \{ t | forall f, good R (pfx_rev f (wft_ht t f)) \}.

Thm af_t_eq : af_t R <-> af_type R <-> af_t_other R.

Inductive Bar predicates

```
Implicit Types (P : list X -> Prop) (R : X -> X -> Prop).
Inductive bar_t P : list X -> Type :=
    | in_bar_t0 : forall ll, P ll -> bar_t P ll
    | in_bar_t1 : forall ll, (forall a, bar_t P (a::ll))
                            -> bar_t P ll.
Inductive good R : list X -> Prop :=
    | in_good_O : forall ll a b, In b ll
        -> R b a -> good R (a::ll)
    | in_good_1 : forall ll a, good R ll -> good R (a::ll).
Thm af_t_bar_t R : af_t R <-> bar_t (good R) nil.
```


A universe tailored for Higman theorem

- Given a type $\left(X_{i}\right)_{i<k}$, a universe U is a post fixpoint of:

$$
U=\{\star\}+\sum X_{i}+U+\mathbb{N} \times U \times \operatorname{tree} U
$$

- Then $X_{i-1}^{\prime}=X_{i-1}+\sum_{p=0}^{i-1} X_{i} \times \operatorname{tree}\left(X_{0}, \ldots, X_{k-1}\right)$ can be viewed as a sub-type of U (in Veldman 2004, $U=\mathbb{N}$)

Variable X : Type.
Inductive htree_fix :=

```
    | in_htf_u : htree_fix
        (* undefined *)
    | in_htf_0 : X -> htree_fix (* X embeds in U *)
    | in_htf_1 : htree_fix -> htree_fix (* U embed in U *)
    | in_htf_2 : nat -> htree_fix
    -> tree htree_fix -> htree_fix.
```


Higman theorem, the recursive statement

Definition owft X := option (wft X).
Variables (X : Type) (k : nat).
Notation U := (htree_fix X).

Theorem higman_htree_rec (s : nat -> owft U) :
forall P : nat -> U -> Prop,
(forall n, ~ P n (@in_htf_u X))
-> (forall $n \mathrm{x},\{\mathrm{P} n \mathrm{x}\}+\{\sim \mathrm{P} \mathrm{n} \mathrm{x}\}$)
-> (forall n, $k<n->P n=f u n ~=>F a l s e) ~$
-> forall R,
(forall n, n <= k $->$ afs_owft_sec ($\mathrm{s} n$) (P n) (R n))
-> afs_t (wfptree P) (emb_tree_higman R).

What about the logical version

- af : $\mathrm{rel}_{2} X \rightarrow$ Prop instead of af_t : $\mathrm{rel}_{2} X \rightarrow$ Type
- Unlike provable/has a proof, af R is NOT inhabited(af_t R)
- cannot use empty wft to decide when R is full or not !!
- To get af $R \Rightarrow \exists t$, af_securedby (t, R), you either need:
- FunctionalChoice_on: $(\forall x \exists y, x R y) \Rightarrow \exists f \forall x, x R f(x)$
- or Brouwer's thesis (Veldman 2004)
- How to replace lexicographic induction of wft sequences?
- first idea: encode lex. product at Prop level instead of Type
- new idea: use well-founded upto relations
wf. upto rels. are stable under lex. products

Well-founded upto relations

```
Variable (X Y : Type).
Implicit Type (f : X -> Y) (R : relation X)
        (P : X -> Prop) (Q : Y -> Prop).
```

Definition well_founded R :=
forall P, (forall a, (forall b, R b a \quad P b)
-> P a)
-> forall a, Pa.
Definition well_founded_upto f $\mathrm{R}:=$
forall Q, (forall a, (forall $b, R \quad b a \rightarrow Q(f \quad b)$)
$->$ (f a))
-> forall $a, Q(f a)$.

Almost full rels and Wf upto $1 / 2$

Inductive afw : Set := af_empty | af_full | af_rlift.
Let lt_afw : afw \rightarrow afw $->$ Prop. ($*$ empty $<$ full < rlift *)

Definition afsr_correct (c : af_subrel) := match c with

| (af_full , (P, R)) \Rightarrow forall $x y, P x \rightarrow P y \rightarrow R x y$
| (af_rlift, (P,R)) => afs P R
end.

Almost full rels and Wf upto 2/2

```
Definition lt_afsr (c1 c2 : af_subrel) :=
    match c1 , c2 with
        | (w1, (P1,R1)) , (w2, (P2,R2))
    => lt_afw w1 w2
    \/ w1 = w2
    / w 1 = af_rlift
    八 P1 = P2
    / exists p, P1 p
    / \(\mathrm{R} 1=(\mathrm{R} 2\) rlift p\()\)
    end. (* this relation has reflexive elements *)
Theorem lt_afsr_upto_wf :
    well_founded_upto (@snd _ _) afsr_correct lt_afsr.
```


What about Kruskal's tree theorem ?

- Shares the same structure as Higman theorem
- There are twice as many cases
- The proof uses both Higman lemma and Higman theorem
- The lexicographic product is a bit different: more facile
- The universe is not the same:

$$
U=\{\star\}+X+U+U \times \text { list }(\operatorname{list}(\operatorname{tree} U))
$$

- Replace insert with the more general intercalate

$$
\text { intercalate }\left[a_{1}, \ldots, a_{n}\right]\left[l_{0}, \ldots, l_{n}\right]=l_{0}++a_{1}:: \cdots++a_{n}:: l_{n}
$$

- emb_tree_upto: inbetween the product and the homeomorphic

Tree Embedding upto k

- $\operatorname{tree}\left(X_{n}\right)_{n \in \mathbb{N}}=T$ where T is lfp of $T=\sum_{n=0}^{\infty} X_{n} \times T^{n}$
- $k \in \mathbb{N}$ and an arity-indexed relation $R: \forall n \in \mathbb{N}, \mathrm{rel}_{2}\left(X_{n}\right)$
- one X_{n} for each arity, but $X_{k}=X_{n}$ as soon as $n \geq k$

$$
\begin{gathered}
\frac{s<_{k, R}^{u} t_{i}}{s<_{k, R}^{u}\left\langle x_{n} \mid t_{1}, \ldots, t_{n}\right\rangle} \\
\frac{n<k \quad x_{n} R_{n} y_{n} \quad s_{1}<_{k, R}^{u} t_{1}, \ldots, s_{n}<_{k, R}^{u} t_{n}}{\left\langle x_{n} \mid s_{1}, \ldots, s_{n}\right\rangle<_{k, R}^{u}\left\langle y_{n} \mid t_{1}, \ldots, t_{n}\right\rangle} \\
k \leq i \quad x_{i} R_{k} x_{j} \quad\left[s_{1}, \ldots, s_{i}\right]\left(\text { subword }<_{k, R}^{u}\right)\left[t_{1}, \ldots, t_{j}\right] \\
\left\langle x_{i} \mid s_{1}, \ldots, s_{i}\right\rangle<_{k, R}^{u}\left\langle x_{j} \mid t_{1}, \ldots, t_{j}\right\rangle
\end{gathered}
$$

Coq code for emb_tree_upto

```
Variables (k : nat) (R : nat -> X -> X -> Prop).
Inductive emb_tree_upto : tree X -> tree X -> Prop :=
    | in_embut_0 : forall s t x ll, In t ll -> s <eu t
    -> s <eu in_tree x ll
    | in_embut_1 : forall x y ll mm, length ll < k
                            -> R (length ll) x y
                            -> Forall2 emb_tree_upto ll mm
                            -> in_tree x ll <eu in_tree y mm
    | in_embut_2 : forall x y ll mm, k <= length ll
                            -> R k x y
                            -> subword emb_tree_upto ll mm
                            -> in_tree x ll <eu in_tree y mm
where "x <eu y" := (emb_tree_upto x y).
```


Kruskal's Tree Theorem, the recursive statement

```
Variables (X : Type).
Notation U := (ktree_fix X).
Theorem kruskal_ktree_rec (s : nt_stump U) :
    forall k, k = nts_char s
-> forall (P : nat -> U -> Prop),
            (forall n, ~ P n in_ktf_u)
        -> (forall n x, { P n x } + { ~ P n x })
        -> (forall n, k <= n -> P k = P n)
-> forall (R : nat -> relation U),
    (forall n, n <= k
        -> afs_owft_sec (nts_seq s n) (P n) (R n))
-> afs_t (wfptree P) (emb_tree_upto k R).
```

