4 D

Kruskal’s tree theorem in Type Theory

Dominique Larchey-Wendling
TYPES team

LORIA — CNRS

Nancy, France

http://www.loria.fr/~larchey/Kruskal

\Foundations for the Practical Formalization of Mathematics 2017/

1

~

Well Quasi Orders (WQO) 1/2'

e Important concept in Computer Science:

— strenghtens well-foundedness, more stable

— termination of rewriting (Dershowitz, RPO)

~

— size-change termination, terminator (Vytiniostis, Coquand ...)

e Important concept in Mathematics:

N

— Dickson’s lemma. Hieman’s lemma
9

— Higman’s theorem, Kruskal’s theorem

— Robertson-Seymour theorem (graph minor theorem)

— Unprovability result: Kruskal theorem not in PA (Friedman)

/

~

~

Well Quasi Orders (WQO) 2/2'

e for < a quasi order over X: reflexive & transitive binary relation

e several classically equivalent definitions (see e.g. JGL 2013)

— almost full: each (z;);en has a good pair (x; < x; with ¢ < j)
— < well-founded and no oo antichain

— finite basis: U = 17U implies U = 1F' for some finite F'

— {JU | U C X} well-founded by C

e many of these equivalences do not hold intuitionistically

N

/

~

WQOs are stable under type constructs'

Given a WQO < on X, we can lift < to WQOs on:

Higman lemma: list(X) with subword(<)

Higman thm: btree(k, X) with emb_product(<) (any k € N)
Kruskal theorem: tree(X) with emb_homeo(<)

These theorem are closure properties of the class of WQOs

Other noticable results:

Dickson’s lemma: (N*, <) is a WQO

Finite sequence thm: 1ist(N) WQO under subword(<)
Ramsey theorem: <; and <, WQOs imply <; x <5 WQO

~

~

N

What Intuitionistic Kruskal Tree Theorem?'

e The meaning of those closure theorems intuitionistically:
— depends of what is a WQO (which definition?)

— but not on e.g. emb_homeo which has an inductive definition

e What is a suitable intuitionistic definition of WQO 7
— quasi-order does not play an important/difficult role
— should be classically equivalent to the usual definition
— should intuitionistically imply almost full

— intuitionistic WQOs must be stable under liftings

e Allow the proof and use of Ramsey, Higman, Kruskal... results

~

/ Intuitionistic formulations of WQOs 1/ 2' \

e Almost full relations (Veldman&Bezem 93)
— each (x;);eny has z; R x; with ¢ < j
— works for Higman and Kruskal theorems (Veldman 04)

— uses stumps over N which require Brouwer’s thesis

e Bar induction (Coquand&Fridlender 93)
— bar extends (good R) ||

— works for the general Higman lemma (Fridlender 97)

e Well-foundedness (Seisenberger 2003)
— extends(™Y is well-founded on Bad(R)

— works for Higman lemma and Kruskal theorem

\ — requires decidability of R /

N

/ Intuitionistic formulations of WQOs 2/ 2' \

Almost full relations (Vytiniostis&Coquand& Wahlstedt 12)
— af(R) inductively defined
— works for Ramsey theorem

— intuitionistically equivalent to bar extends (good R) []

Seisenberger’s definition not equiv. to Coquand&Fridlender for
undecidable R

Veldman&Bezem definition works for R over N (not over
arbitrary types) but requires Brouwer’s thesis

Let us introduce

— bar inductive predicates

— Coquand et al. inductive definition of almost full

/

7

4 O

Bar inductive predicate, accessibility predicate (i)

o Given 7 : X - X — Prop, z: X and Q : X — Prop
e 1 bars () if every oo path from x meets ()
e 1 i1s accessible if every oo path from x meets _ — False

e Inductive definitions (Prop or Type) are stronger (intui.)

acc T x

Q x Vy, T xy—bar T Qy Vy, T y—accT y
bar 7 Q = bar 7 Q x

e Axioms (like Brouwer’s bar thesis) for equivalence

e Obviously: acc T z iff bar T (_+— False) x

N /

/ FAN theorem and bar over lists (ii) I

e inductive FAN theorem:

bar 7 QQ x — bar T° VQ [x]

— extends [m ifT m = _:: 1

—good RIiffll=1++|b

m ++

e bar extends (good R) |[] iff

— for monotonic Q: Vxy, T xy—Q x — Q vy
— T°Imiff Vy,y € m — dx,x € INT z y (direct image)
— (VQ) 1 iff Vx,z € | — Q «x (finite quantification)

e We use bar 7) with 7 = extends and () = good R

21 for some a R b

iterated extensions of [] must cross a good list

\o every infinite sequence contains a good pair (almost full)

~

/

9

/ Well-founded trees over a type X I

e Well-founded trees wft(X)
— branching indexed by X

— the least fixpoint of [wft(X) = {x} + X — wft(X)

e Given a branch f : N — X, compute its height:

- fl+)=a— f(1+2) A
- ht(inl*,) =0
- ht(inrg, f) =1+ ht(g9(fo), f(1 +-)) f1 \

\o Veldman’s stumps are sets of branches of trees in wft(N

~

10

/ Coquand’s Almost full relations, step by step I \

1. Veldman et al.: Vf :N—= X, Jt <j, f; R f;

Logically eq. variant: Vf :N— X, dn, Ji<j<n, f; R f;
Partially informative: Vf : N — X, {n ’ Ji<j<n, fi R fj}
Variant: {h: (N— X) =N |Vf, Ji<j<h(f), fi R f;}
Variant: {¢:wft(X) ‘ Vf, 3i <j<ht(t, f), fi R f;}

S o s w1

Coquand et al.: is defined as an inductive predicate af _t(R)
e the prefix of length ht(¢, f) of f: N — X contains a good pair

e the computational content is (for every sequence f : N — X):

— a | bound | on the size of the search space for good pairs

\ — and it is not a good pair /

11

/ A well-founded tree for (N, <)

e Property: Vf:N =N, i <73 <2+ fo, fi < f;

e In wft(N), we define T,, the tree of uniform height n:

— Ty = inl(x) and 114, = inr(_— T},)
— for any f: N— N, ht(7T,, f) =n

e And T< = inr(n — T14n)

Tl—l—n

AN A

X

Tl—l—z

\0 Hence ht(Tg,f) =1 +ht(T1—|-f07f<1 +:)) =2+ fo

~

/

12

/ Almost full relations, inductively' \

e Lifted relation: x (RTu)y=xz RyVu Rx

— in R T u, elements above u are forbidden in bad sequences

e full : rely X — |Prop|and af t : rely, X —|Type

\V/CC, Y, T R Y full R \V/U, af—t(R T U)
full R af t R af t R

e af securedby : wft(X) — rel, X — Prop:
— af _securedby(inl*, R) = full R
— af_securedby(inr g, R) = Vu, af_securedby(g(u), R T u)

e these are intuitionistically “equivalent” (hold in Type, not Prop):
— af t R and {¢: wft(X) | af_securedby(t, R)}

_ —and {truse(X) | W/, 3 < <ne(t.f). iR f) -

13

~

s

e good R:1list X — Prop
— good RILiff Il =1 ++

Imost full relations, by bar inductive predicates

bli:m-+-+|al::r for some a R b

— beware of the (implicit) use snoc lists

— good has an easy inductive definition

e for P:1list X — Prop, we define bar_t P :1list X — Type

Pl

bar_t Pl

e we show: af t(RTa,T...

e another characterization:

Vu, bar t P (u:: 1)
bar_t P [l

T ay) iff bar_t (good R) |aq, ..., an,]

af t R iff bar_t (good R) []

14

~

Almost full relations, some properties' \

af t refl: if af t R then =x C R (iff in case X is finite)
af t_inc: if R C S and af_t R then af t S

af _t_surjective (easy but very useful):

—for f: X Y — Prop, R:rels X and S :rely Y

— if f surjective: Vy,{x | f = y}

— if f morphism: f x1 y1 and f x5 ys and 1 R x5 imply y1 S yo
— then af_t R implies af_t S

Ramsey (Coquand): af t R and af_t.S imply af t(RN.5)
— he deduces af t(R x S) and af_t(R+ 5)

I stop because you may be almost full (but it is a MUST READ)/

15

e Given R :rels X over a type X

e The subword relation <% : rels (1ist X) defined by 3 rules

[< m aRbO [<pm

] <% (] [<Ebm a:xl<Bb:m

e also write subword R for <%

e Higman lemma (Fridlender 97, non informative version):

bar (good R) [] implies bar (good (subword R)) []

e Nearly the same proof works for bar_t instead of bar

\o But this proof cannot be generalized to finite trees...

/ Higman lemma and the subword relation' \

/

16

/The product tree embedding, Higman theorem I\

e trees with same type for all arities: tree X = X x list(tree X)

e trees of breadth bounded by £ € N:

btree k X = {t | tree_fall ({_|ll) — lengthll < k) t}

e anyt € T ist = (x|t1,...,tp) Withn<k,z e X andt; €T

e for a relation R : rels X, we define (needs some work...)

s <pt TRy s1<ptiy...,sp<ptn

s <p (Tplt1, ..., tn) (x]$1,. .y Sn) <p (Ylt1, ... tn)

e also write emb_tree_product R for <j

\o Higman theorem: af_t R implies af t(<}) on btree k X /

17

/The homeomorphic embedding, Krukal theorem \I

e one type X for all arities: tree X = X X list(tree X)

e for R :rely X, we define <% by nested induction

s <g ti
s <% (xplt1, ..., tn)
z; Rx; [s1,...,s] (subword <%) [t1,...,1;]
(xils1,. .y 8i) <p (xjlt1, ..., t;)

e hand-written elimination scheme (nested induction)

e we also write emb_tree_homeo R for <7

\o Kruskal theorem: af_t R implies af _t(<%) /

18

~

e high level and informal proof principles of Higman’s theorem

Plan of the rest of the presentation'

— with ideas from Veldman (mostly), Fridlender and Coquand

— tree(X,,)n<k, one type (and one relation)

for each arity

e focus on several implementation chalenges of that proof
— tree(X,,) as a (decidable) subtype of tree(>_ X))

— embed > X, in a (specialized) universe U

— empty type grounded induction for af_t, .

e what about the non-informative case af 7

— beware af R is weaker than inhabited(af_t R)

— well-foundedness upto a projection

\o from Higman theorem to Kruskal theorem (remarks)

~

/

19

k—1
o tree(X,)ner =T where Tis lfp of T =) X, x T"

n=0

e one type X,, for each arity n < k
e any t € T ist = (xyl|t1,...,t,) Withx, € X, and t; € T

e for arity-indexed relations R : Vn < k,rels (X,,), we define

S<%ti Tn Ry Yn 31<%t1,...,sn<%tn

/The product tree embedding, Higman theorem I\

s <M A{xplt, ... ta) (Tn|s1, .-y 8n) <B (ynlti, ... tn)

e also write emb_tree higman R for <%

\o Higman thm.: (Vn < k,af_t R,) implies af t(<’%)

/

20

Higman theorem, based on (Veldman 2004) I

e cach af t R, is witnessed by w,,: af_securedby(w,, R,)

e casier outermost induction on [wy, ..., wk_1] (lexicographic)
e apply rule 2, hence prove: Vt,af t (<t 1)
e do this by structural induction on ¢

— t = (x;|t1,...,t;) withi <k

— we can assume af t (<% 1t1),...,af t (<% 1)

— we show af _t (< 1 (w;]t1,..., L))

— depends on 7 = 0 or not, w; = inl % or not

21

Higman thm, case of leaves (i = 0 and wy = inr g) I

e we have t = (x¢|0) (i =0)

e R = RyTxpis af_t, witnessed by w{ = g(xo)

e R =R; and w; = w; for 0 <j <k
— w(= g(xg) is a sub-wft(Xy) of wy = inr g, hence simpler
— |w), w1, ..., wg_1] easier than [wq, w1, ..., wk_1]
— we deduce af t(<’,) by induction

e we show <%, C <l 1 (z0|0) (relatively easy to check)

e we conclude af_t(<}é MNxo|0))

22

t = (x0]0)

Ro T xo = Ry because Ry is (already) full (wy = inl x)

but then we have o Ry y for any y
hence we deduce {xo|0) <% (z;|v,...,v;)
— any (finite) tree contains a leaf (y|0)
— {(x0|0) embeds into any leaf, e.g. (y|0)

we deduce <’ 1 (z0]0) is full (trivial to check)

we conclude af t(</t 1 (xo|0))

23

/ Higman thm (0 < i < k and w; = inr g) 1/2' \

o let T'=tree(Xp,..., Xx_1)
® Wwe havet:<a:'7;]t1,...,t7;> with 0 <17 < k
o X! =X;and R; = R; for j & {i —1,i}

e X' =X, and R, = R; T z; is af _t for w, = g(x;) simpler than w;

1—1 1—1
o X?f—l = Xz'—l + ZXZ x T and Ré—l = Ri—l + ZRZ X (<% Ttp)
p=0 p=0

. / . . /
R, | 1s af_t by Ramsey, obtain w;_;
/ / :
— .., wl_q,w},...] easier than ..., w;_1,w;,..]

— we deduce af t(<’,) by induction

\o we show af t(<’,) implies af t(<% 1 (x;|t1,...,t;)) (not easy) /

24

/ Higman thm (0 < i < k and w; = inr g) 2/2' \

o with X! | =X, 1+ Z;_:% X; x T, define an evaluation map
e ev:tree(Xy,..., X! {,X;,...) > tree(Xo,..., Xx_1)

— ev((y;lt1,...,t5)) = (y;levty,...,evt;) for g #i—1

— ev((yi—1lt1, ..., ti—1)) = (yi—1|levity,...,evt;_1)

— ev({(p,yi,t)|t1, ..., ti—1)) = (y;|insert t p leviy,...,evi;_1])
e ev (is surjective and) has finite inverse images

— allows the use of bar_t induction and the FAN theorem
e use ev to show af t(<”%,) implies af t(< 1 (z4|t1,.. ., 1))

— combinatorial principle: Vx € X, P, V Q. = Vx P, V dx Q)

— and more complex version (see later)
\ — very technical part of Coq proof (largely absent from paper)/

25

/ Higman thm (0 <7 < k and w; = inl x) I \

o ' = tree(Xo, e 7Xk—1) and t = <33i|t1, e ,tz'> with 0 <1 < k
e w; = inl * thus we have R; is full on X

o X’ and R} for j # i as in case w; = inrg

e | X! =(|with any R, (only one exists) is af_t

e | ensure case where X! = () is simpler than R; is full on X;

— w, = None is simpler than w; = Some(inl x)
— we deduce af t(<’%,) by induction
e we show af t(<”%,) implies af t(< 1 (z;|t1, ..., 1))

— similar to the case w; = inr g

\ — but not easy to factorize the Coq duplicated code /

26

/ Higman thm (¢ < k£ and w; = None) I

o T'=1tree(Xg,..., Xt 1) and t = (x;|t1,...,t;) with 0 <i < k
e but because w; = None, we have X; = ()

e this contradicts x; € X;; an easy case indeed

The induction principle of Veldman’s proof I

e lexicographic product (corresponds to nested induction)

e not grounded on full relations (witnessed by the empty wft)

e but grounded on | empty types

\o empty types are sub-cases of full relations

~

27

/ Remarks on the implentation of that proof I \

e Implements “well” for e.g. at most unary/binary trees

Theorem higman_abt_t : forall Z T, Gaf_t Z T
-> forall Y S, Gaf_t Y S
-> forall X R, Gaf_t X R
-> af_t (embed_abtree R S T).
Proof. do 3 (induction 1 using af_t_dep_rect); End.

e Thought it requires a dependent induction principle for af_t

e But that does not work for parameterized breadth k
— tree(X,)n<r VERY cumbersome to work with

— . wl_q,wi,...] “easier” than [...,w;—1,w;,...]

\\\¥ — butthezuéél:wft}féq_andzuﬁ;l:Wft)(FJnotsanuatype!i///

28

/ A dependent induction principle for af _tI \

Section af_t_dep_rect.
Variable (P : forall X, relation X -> Type).

Hypothesis HPO : P ER.
Hypothesis HP1 : forall X R, full R -> P ER -> QP X R.
Hypothesis HP2 : forall X R, (forall x, af_t (R rlift x))
-> (forall x, P (R rlift x))
-> @P X R.

Theorem af_t_dep_rect : forall X R, af_t R -> @GP X R.

\\f?d af_t_dep_rect.)///

29

/ Finite Trees in Coq' \

e Dependent types: nice way to represent complex data structures
e But too much dependency can make your life miserable

e Hence we represent tree(X,,),en by:

{t:tree(d X)) | tree_fall (z Il — arityz = lengthll) ¢t}

e tree X is the Ifp of tree X = X X list(tree X):

Variable X : Type.

Inductive tree : Type := in_tree : X -> list tree -> tree.

e Can freely use the List library to deal with the forest of sons

\o Nested definition does not generate a good elimination scheme /

30

~

Finite Trees in Coq, a nice recursor'

Variable P : tree -> Type.
Hypothesis f : forall a 11, (forall x, In x 11 -> P x)
-> P (in_tree a 11).

Definition tree rect t : Pt := ... (x use Fix from Wf *)

Hypothesis f_ext

Fact tree_rect _fix a 11

N

tree rect (in_tree a 11) = f a 11 (fun t _ => tree_rect t)

~

/

31

/ Finite trees in Coq, example deﬁnitions' \

Implicit Types (P : X -> list tree -> Prop)
(Q : nat -> X -> Prop).

Definition tree_fall P : tree -> Prop.

Fact tree_fall_fix P x 11
tree_fall P (in_tree x 11)
<-> P x 11
/\ forall t, In t 11 -> tree_fall P t.

Let btree k := tree_fall (fun x 11 => length 11 < k).
\\fft wiptree Q := tree_fall (fun x 11 => Q (length 11) X))///

32

/ Higman Embedding in Coq' \

Variables (X : Type) (R : nat -> X -> X -> Prop).

Inductive emb_tree_higman : tree X -> tree X -> Prop :=
| in_emb_tree_higman O : forall s t x 11,
In t 11
-> s <eh t
-> s <eh 1in_tree x 11
in_emb_tree_higman_1 : forall x y 11 mm,
R (length 11) x y
-> Forall2 emb_tree_higman 11 mm

-> in_tree x 11 <eh in_tree y mm

\\i?ere "x <eh y" := (emb_tree_higman x y). 4///

33

/Higman Embedding in Coq, elimination Scheme \I

Variable S : tree X -> tree X -> Prop.
Infix "<<" := S (at level 70).

Hypothesis S_subO : forall s t x 11,
In £t 11 -> s <eh t
-> s <Kt -> 8 << in_tree x 1l.

Hypothesis S_subl : forall x y 11 mm, R (length 11) x y

-> Forall2 emb_tree_higman 11 mm
-> Forall2 S 11 mm

-> in_tree x 11 << in_tree y mm.

\\E?eorem emb_tree_higman_ind tl t2 : tl1l <eh t2 -> t1 << t?;//

34

~

N

Definition af_t R := { t : wft X | af_securedby R t }.

Inductive af_type : (X -> X -> Prop) -> Type :=

Definition af_t_other R :=

Thm af_t_eq : af_t R <-> af_type R <-> af_t_other R.

~

Almost Full predicate'

| in_af_typeO : forall R, full R -> af_type R
| in_af_typel : forall R, (forall a, af_type (R rlift a))
-> af_type R.

{ t | forall f, good R (pfx_rev f (wft_ht t f)) }.

/

35

/ Inductive Bar predicates' \

Implicit Types (P : list X -> Prop) (R : X -> X -> Prop).

Inductive bar_t P : list X -> Type :=
| in_bar_tO0 : forall 11, P 11 -> bar_t P 11
| in_bar_t1 : forall 11, (forall a, bar_t P (a::11))
-> bar_t P 11.

Inductive good R : list X —-> Prop :=
| in_good_0 : forall 11 a b, In b 11
-> R ba ->good R (a::11)
| in_good_1 : forall 11 a, good R 11 -> good R (a::11).

\\E?m af_t_bar_t R : af_t R <-> bar_t (good R) nil.)///

36

/ A universe tailored for Higman theorem' \

e Given a type (X;)i<k, a universe U is a post fixpoint of:
U={*x}+> X;+U+NxU x treeU

o’Then‘X{_l::)(F4[+—§:;;%)(ix:tree(Xb,..W;Xk_l)canfbe
viewed as a sub-type of U (in Veldman 2004, U = N)

Variable X : Type.

Inductive htree_fix :=
| in_htf_u : htree_fix (* undefined *)
| in_htf_O0 : X -> htree_fix (x* X embeds in U x*)
| in_htf_1 : htree_fix -> htree_fix (*x U embed in U x)
| in_htf_2 : nat -> htree_fix

\\\‘ -> tree htree fix -> htree fix.)///

37

/ Higman theorem, the recursive statement' \

Definition owft X := option (wft X).
Variables (X : Type) (k : nat).
Notation U := (htree_fix X).

Theorem higman_htree_rec (s : nat -> owft U)
forall P : nat -> U -> Prop,
(forall n, ~ P n (@in_htf_u X))
-> (forall nx, { Pnx}t+{ " Pnzx})
-> (forall n, k < n -> P n = fun _ => False)
-> forall R,
(forall n, n <= k -> afs_owft_sec (s n) (P n) (R n))

\\:f afs_t (wfptree P) (emb_tree_higman R). 4///

38

~

N

What about the logical Versionl

af : rels X —|Prop |instead of af_t : rely, X — Type

Unlike provable/has a proof, af R is NOT inhabited(af_t R)

— cannot use empty wft to decide when R is full or not !!

To get af R = Jt, af _securedby(t, R), you either need:
— FunctionalChoice_on: (Vxdy,x Ry) = 3fVx,x R f(x)
— or Brouwer’s thesis (Veldman 2004)

How to replace lexicographic induction of wft sequences?
— first idea: encode lex. product at Prop level instead of Type

— new idea: use well-founded upto relations

wi. upto rels. are stable under lex. products

~

39

/ Well-founded upto relations' \

Variable (X Y : Type).
Implicit Type (f : X => Y) (R : relation X)
(P : X -> Prop) (Q : Y -> Prop).

Definition well_founded R :=
forall P, (forall a, (forall b, R b a -> P b)
-> P a)
-> forall a, P a.

Definition well_founded_upto f R :
forall Q, (forall a, (forall b, Rb a ->Q (f b))
-> Q (f a))

\\\\ -> forall a, Q (f a). ,///

40

~

Almost full rels and Wf upto 1/ 2'

Inductive afw : Set := af_empty | af_full | af_rlift.

Definition afsr _correct (c : af_subrel) :=

match ¢ with
| (af_empty, (P,_)) => forall x, ~ P x

| (af_rlift,(P,R)) => afs P R

end.

N

Let 1t_afw : afw -> afw -> Prop. (* empty < full < rlift *)

Definition af_subrel := (af_w * ((X -> Prop) * relation X)).

| (af_full ,(P,R)) => forall xy, Px >Py ->Rzxy

~

/

41

/ Almost full rels and Wf upto 2/ 2' \

Definition 1lt_afsr (cl c2 : af_subrel) :=
match cl , c2 with
| (wi,(P1,R1)) , (w2,(P2,R2))
=> 1t_afw wl w2

\/ wl = w2
/\ wi = af_rlift
/\ P1 = P2

/\ exists p, Pl p
/\ R1 = (R2 rlift p)

end. (% this relation has reflexive elements *)

Theorem 1lt_afsr_upto_wf
\\\‘Well_founded_upto (@snd _ _) afsr_correct 1lt_afsr.)///

42

What about Kruskal’s tree theorem ?' \

Shares the same structure as Higman theorem

There are twice as many cases

The proof uses both Higman lemma and Higman theorem
The lexicographic product is a bit different: more facile

The universe is not the same:

U={x}+X+U+U x list(list(treelU))

Replace insert with the more general intercalate

intercalate [a1,...,an] [lo, .-, ln] =lo++ay - ++ay =,

emb_tree_upto: inbetween the product and the homeomorphic /

43

/ Tree Embedding upto k'

o tree(X,)neny =T where T is Ifp of T' = Z X, xT"

n=0

e k€ N and an arity-indexed relation R : Vn € N, rels (X,,)

e one X, for each arity, but | X, = X,

as soon as n > k

s <p.rli
s <pr (Talt, .. tn)
n<k x,R,uyn 81<Z,Rt1,...,sn<}jﬂtn
(Tnls1,- -5 8n) <k g (YUnlt1, - tn)
k<i z Rpx; [S1,---,5] (subword<’,‘;,R) 1, ..., 1]

\ <CIZ¢’81,...,S¢> <%,R <$j|t1,...,tj>

~

/

44

/ Coq code for emb_tree_uptol \

Variables (k : nat) (R : nat -> X -> X -> Prop).
Inductive emb_tree_upto : tree X -> tree X -> Prop :=
| in_embut_O : forall s t x 11, In t 11 -> s <eu t
-> s <eu in_tree x 11
| in_embut_1 : forall x y 11 mm, length 11 < k
-> R (length 11) x y
-> Forall2 emb_tree_upto 11 mm
-> in_tree x 11 <eu in_tree y mm
in_embut_2 : forall x y 11 mm, k <= length 11
>R kxy
—-> subword emb_tree_upto 11 mm

-> in_tree x 11 <eu in_tree y mm

\\i?ere "x <eu y" := (emb_tree_upto x y). 4///

45

Variables (X : Type).
Notation U := (ktree_fix X).

Theorem kruskal_ktree_rec (s : nt_stump U)
forall k, k = nts_char s
-> forall (P : nat -> U -> Prop),
(forall n, ~ P n in_ktf_u)
-> (forallnx, { Pnx 3} +4{ " Pnzxl})
-> (forall n, k <= n -> P k =P n)
-> forall (R : nat -> relation U),
(forall n, n <= k
-> afs_owft_sec (nts_seq s n) (P n) (R n))
\\:f afs_t (wfptree P) (emb_tree_upto k R).

/Kruskal’s Tree Theorem, the recursive Statement\

/

46

